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Dynamic Optimization Problems (DOPs)

DOPs: problems that change over time

F = f(~x, ~φ, t)

~x: decision variable(s), ~φ: parameter(s), t: time

Change may involve factors:

Objectives, constraints, environmental parameters

Key characteristics of dynamism

Speed, severity, periodicity, detectability/predictability

DOPs attracted a growing interest in recent years

Books, journals, competition, workshops/conferences
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Approaches for EAs to Address DOPs

Diversity schemes: handle convergence directly

Multi-population schemes: co-operate sub-populations

Memory schemes: store and reuse useful information

Adaptive schemes: adapt generators and parameters

Prediction schemes: predict changes and anticipate

No clear winner and different interactions exist among

approaches

Golden rule: balancing exploration & exploitation over time
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Multi-Population Methods for DOPs – I

Aim: maintain multi-populations on different peaks to locate

and track multiple optima

Key questions:

How to determine the proper number of sub-populations
How to calculate the search area of each sub-population

How to create sub-populations

Algorithms:

k-means clustering algorithm: Kennedy’00
Shifting balance GA (SBGA): Oppacher & Wineberg ’99
Self organizing scouts (SOS) GA: Branke et al ’00
nbest PSO and niching PSO (NichePSO): Brits ’02
Speciation based PSO (SPSO): Parrott and Li ’04

Charged PSO (mCPSO) and quantum swarm optimization

(mQSO): Blackwell and Branke ’06
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Multi-Population Methods for DOPs – II

Limitations of the above algorithms:

The number of sub-swarms is predefined (k-means PSO,
mCPSO, and mQSO)

The search radius of each sub-swarm must be given by
experimental experience (SPSO, mCPSO, and mQSO)

Simply create sub-swarms without analysing the population

distribution (NichePSO and SPSO)

Problems might be caused by the above algorithms:

There may be improper number of sub-swarms

One sub-swarm might cover more than one peaks

One peak might be surrounded by more than one sub-swarms
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Multi-Population with Clustering: Framework

Clustering: To create a proper number of sub-populations

Local search: An EA to fast converge on local optima

Redundancy control: To save computational resource

Random immigrants: To increase the population diversity

Clustering

Local search

Stop

End

Redundancy
control

Random
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Initialization
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Clustering Method

Single Linkage Hierarchical Clustering is used

Creates a list G of clusters with each cluster containing one
individual in the intitial population pop

In each iteration, find a pair of clusters r and s such that they
are the closest among all pairs of clusters and the total number
of particles in them is not greater than subSize; if successful,
combines r and s into one cluster

This iteration continues until all clusters in G contain more than

one individual
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Local Search Strategy

After clustering, each sub-population searches a local area

covered

Any EA can be used as the local search strategy, i.e., the

framework can be intantiated into any EA
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Redundancy Control

// overlapping check
for each pair of sub-populations (t, s) in plst do

if roverlap(t, s) > β then
Merge t and s into t

Remove s from plst

end if
end for
// overcrowding check
for each sub-population t ∈ plst do

if |t| > subSize then
Remove worst (|t| − subSize) individuals from t

end if
end for
// convergence check
for each sub-population s ∈ plst do

if radius(s) < ǫ then
Remove s from plst

end if
end for
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Maintaining Diversity

Idea: Increase the population diversity if it deceases to a

certain level

The population diversity is measured by the following ratio:

div(t) = nind(t)/gSize

where nind(t) is the number of survived individuals at iteration

t and gSzie is the size of the initial population

If div(t) decreases to a threshold (α), a temporal population of

size gSize− nind(t) is randomly generated

The temporal population is clustered and the obtained new

sub-populations are added to the whole list of sub-populations
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Multi-Population with Clustering: Features

Automatically creates a proper number of sub-pops in different

sub-areas

Works in dynamic environments with any properties

Does not depend on the detection of changes. Good for

hard-to-detect or undetectable dynamic environments
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Easy to be instantiated into any EA, e.g., PSO, GA, and DE
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Experiments on the MPB Problem

Parameter Value Parameter Value

p (number of peaks) 10 correlation coefficient λ 0

change frequency 5000 S [0, 100]

height severity 7.0 H [30.0, 70.0]

width severity 1.0 W [1, 12]

peak shape cone I 50.0

basic function no Population size 100

shift length s 1.0 Number of changes 100

number of dimensions D 5 Number of runs 30

percentage of changing peaks 100%
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Clustering PSO – Dynamic Behaviour
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Clustering EAs – Comparison Results

Algorithm rankings on MPB with different shift severities

Algorithm Severity of shift length (s) Total

0 1 2 3 4 5 6

CPSOR 1 1 2 2 2 2 2 2

CGAR 10 10 8 7 8 7 5 7

CDER 11 11 11 11 11 11 11 11

CPSO 2 2 1 1 1 1 1 1

mCPSO 8 8 9 9 10 9 9 10

mQSO 9 7 7 8 9 8 8 8

CESO 4 4 3 3 3 3 3 3

rSPSO 3 6 5 6 7 6 6 6

SPSO 7 9 10 10 5 10 10 9

ESCA 5 5 4 4 4 4 4 4

PSO-CP 6 3 6 5 6 5 7 5
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Hard-to-Detect Dynamic Environments

Fix the percentage of changing peaks (cPeaks)

s cPeaks 0.1 0.3 0.5 0.7 0.9 1.0

0 CPSOR 1.47 0.535 0.5 0.6 1.72 0.418

CPSO 3.01 2.7 0.904 0.765 1.68 0.465

1 CPSOR 1.77 1.09 0.633 0.742 1.83 0.599

CPSO 3 2.76 0.912 1.02 2.11 0.715

2 CPSOR 1.89 1.17 0.781 0.99 2.04 0.849

CPSO 3.24 2.96 0.939 1.19 2.24 0.843

3 CPSOR 1.94 1.61 0.995 1.24 2.35 0.964

CPSO 3.11 3.38 0.928 1.32 2.58 0.911

4 CPSOR 2.06 2.09 1.25 1.58 2.6 1.38

CPSO 3.17 3.29 1.11 1.43 2.66 0.997

5 CPSOR 2.05 2.6 1.34 1.72 2.88 1.69

CPSO 3.27 3.79 1.14 1.45 2.69 1.08
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Conclusions and Future Work

Conclusions

Multi-population approaches are effective for DOPs

Clustering can automatically create a proper number of
sub-pops in different sub-regions

Multi-population with clustering can address different dynamic

environments, esp., with hard-to-detect or undetectable

changes

Future Work

To improve the performance of the clustering method

To design effective local search EAs within this framework

To test the framework in completely undetectable dynamic

environments
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