Multi-Population Methods with Clustering in Dynamic Environments

Shengxiang Yang

shengxiang.yang@brunel.ac.uk
http://people.brunel.ac.uk/~csstssy

Department of Information Systems and Computing, Brunel University Uxbridge, Middlesex UB8 3PH, United Kingdom

Acknowledgment

- Funded by EPSRC project "Evolutionary Algorithms for Dynamic Optimization Problems"
 - A joint project between University of Birmingham, University of Leicester, and Brunel University, with support from BT and Honda
- This is a joint work with Mr Changhe Li
 - Submitted to IEEE Trans on Evol Comput, 2011

Outline of the Talk

- Introduction to dynamic optimization problems (DOPs)
- Multi-population methods for DOPs
- Framework of multi-population with clustering
- Experimental study
- Conclusions

Dynamic Optimization Problems (DOPs)

DOPs: problems that change over time

$$F = f(\vec{x}, \vec{\phi}, t)$$

 \vec{x} : decision variable(s), $\vec{\phi}$: parameter(s), t: time

- Change may involve factors:
 - Objectives, constraints, environmental parameters
- Key characteristics of dynamism
 - Speed, severity, periodicity, detectability/predictability
- DOPs attracted a growing interest in recent years
 - Books, journals, competition, workshops/conferences

Approaches for EAs to Address DOPs

- Diversity schemes: handle convergence directly
- Multi-population schemes: co-operate sub-populations
- Memory schemes: store and reuse useful information
- Adaptive schemes: adapt generators and parameters
- Prediction schemes: predict changes and anticipate
- No clear winner and different interactions exist among approaches
- Golden rule: balancing exploration & exploitation over time

Multi-Population Methods for DOPs – I

- Aim: maintain multi-populations on different peaks to locate and track multiple optima
- Key questions:
 - How to determine the proper number of sub-populations
 - How to calculate the search area of each sub-population
 - How to create sub-populations
- Algorithms:
 - k-means clustering algorithm: Kennedy'00
 - Shifting balance GA (SBGA): Oppacher & Wineberg '99
 - Self organizing scouts (SOS) GA: Branke et al '00
 - nbest PSO and niching PSO (NichePSO): Brits '02
 - Speciation based PSO (SPSO): Parrott and Li '04
 - Charged PSO (mCPSO) and quantum swarm optimization (mQSO): Blackwell and Branke '06

Multi-Population Methods for DOPs – II

- Limitations of the above algorithms:
 - The number of sub-swarms is predefined (k-means PSO, mCPSO, and mQSO)
 - The search radius of each sub-swarm must be given by experimental experience (SPSO, mCPSO, and mQSO)
 - Simply create sub-swarms without analysing the population distribution (NichePSO and SPSO)
- Problems might be caused by the above algorithms:
 - There may be improper number of sub-swarms
 - One sub-swarm might cover more than one peaks
 - One peak might be surrounded by more than one sub-swarms

Multi-Population with Clustering: Framework

- Clustering: To create a proper number of sub-populations
- Local search: An EA to fast converge on local optima
- Redundancy control: To save computational resource
- Random immigrants: To increase the population diversity

Clustering Method

- Single Linkage Hierarchical Clustering is used
 - Creates a list G of clusters with each cluster containing one individual in the intitial population pop
 - In each iteration, find a pair of clusters r and s such that they are the closest among all pairs of clusters and the total number of particles in them is not greater than subSize; if successful, combines r and s into one cluster
 - This iteration continues until all clusters in G contain more than one individual

Local Search Strategy

- After clustering, each sub-population searches a local area covered
- Any EA can be used as the local search strategy, i.e., the framework can be intantiated into any EA

Redundancy Control

```
// overlapping check
for each pair of sub-populations (t, s) in plst do
  if r_{overlap}(t,s) > \beta then
     \text{Merge } t \text{ and } s \text{ into } t
     Remove s from plst
  end if
end for
// overcrowding check
for each sub-population t \in plst do
  if |t| > subSize then
     Remove worst (|t| - subSize) individuals from t
  end if
end for
// convergence check
for each sub-population s \in plst do
  if radius(s) < \epsilon then
     Remove s from plst
  end if
end for
```


Maintaining Diversity

- Idea: Increase the population diversity if it deceases to a certain level
- The population diversity is measured by the following ratio:

$$div(t) = n_{ind}(t)/gSize$$

where $n_{ind}(t)$ is the number of survived individuals at iteration t and gSzie is the size of the initial population

- If div(t) decreases to a threshold (α), a temporal population of size $gSize n_{ind}(t)$ is randomly generated
- The temporal population is clustered and the obtained new sub-populations are added to the whole list of sub-populations

Multi-Population with Clustering: Features

- Automatically creates a proper number of sub-pops in different sub-areas
- Works in dynamic environments with any properties
 - Does not depend on the detection of changes. Good for hard-to-detect or undetectable dynamic environments

Easy to be instantiated into any EA, e.g., PSO, GA, and DE

Experiments on the MPB Problem

Parameter	Value	Parameter	Value
p (number of peaks)	10	correlation coefficient λ	0
change frequency	5000	S	[0, 100]
height severity	7.0	H	[30.0, 70.0]
width severity	1.0	W	[1, 12]
peak shape	cone	I	50.0
basic function	no	Population size	100
shift length s	1.0	Number of changes	100
number of dimensions D	5	Number of runs	30
		percentage of changing peaks	100%

Clustering PSO – Dynamic Behaviour

Clustering EAs – Comparison Results

Algorithm rankings on MPB with different shift severities

Algorithm		Severity of shift length (s)						
	0	1	2	3	4	5	6	
CPSOR	1	1	2	2	2	2	2	2
CGAR	10	10	8	7	8	7	5	7
CDER	11	11	11	11	11	11	11	11
CPSO	2	2	1	1	1	1	1	1
mCPSO	8	8	9	9	10	9	9	10
mQSO	9	7	7	8	9	8	8	8
CESO	4	4	3	3	3	3	3	3
rSPSO	3	6	5	6	7	6	6	6
SPSO	7	9	10	10	5	10	10	9
ESCA	5	5	4	4	4	4	4	4
PSO-CP	6	3	6	5	6	5	7	5

Hard-to-Detect Dynamic Environments

• Fix the percentage of changing peaks (cPeaks)

s	cPeaks	0.1	0.3	0.5	0.7	0.9	1.0
0	CPSOR	1.47	0.535	0.5	0.6	1.72	0.418
	CPSO	3.01	2.7	0.904	0.765	1.68	0.465
1	CPSOR	1.77	1.09	0.633	0.742	1.83	0.599
	CPSO	3	2.76	0.912	1.02	2.11	0.715
2	CPSOR	1.89	1.17	0.781	0.99	2.04	0.849
	CPSO	3.24	2.96	0.939	1.19	2.24	0.843
3	CPSOR	1.94	1.61	0.995	1.24	2.35	0.964
	CPSO	3.11	3.38	0.928	1.32	2.58	0.911
4	CPSOR	2.06	2.09	1.25	1.58	2.6	1.38
	CPSO	3.17	3.29	1.11	1.43	2.66	0.997
5	CPSOR	2.05	2.6	1.34	1.72	2.88	1.69
	CPSO	3.27	3.79	1.14	1.45	2.69	1.08

Conclusions and Future Work

Conclusions

- Multi-population approaches are effective for DOPs
- Clustering can automatically create a proper number of sub-pops in different sub-regions
- Multi-population with clustering can address different dynamic environments, esp., with hard-to-detect or undetectable changes

Future Work

- To improve the performance of the clustering method
- To design effective local search EAs within this framework
- To test the framework in completely undetectable dynamic environments

