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Introduction

• An introduction to constrained optimization

• Basic idea and first approach

• Simulation results

• Summary and outlook



Constrained Optimization



Existing Methods for Handling Constraints

• Penalty functions

• How to determine the penalty factors?

– death penalty, stationary, dynamic, adaptive



Existing Methods for Handling Constraints

• Repairing

• Stochastic ranking

• Multi-objectivization

• …



Highly Constrained Optimization Problems

• The feasible regions may be small and isolated



Basic Ideas

• To manipulated the feasible region by changing the constraint 
functions

– The manipulated feasible region should be much larger than the 
real one, and it should converge to the real one gradually

– The adaptive manipulation of the feasible region is realized by 
manipulating the constraints

– An approximate model is built for each constraint functions, 
whose complexity increase as the evolution proceeds



Illustration of the Basic Idea

• Achieving incremental approximation accuracy by training a model using increasing 
data samples of the constraint function



How to Use the Manipulated Constraints

• Use synthesized constraints that van be a mixed combination of the 
real and approximate constraints

• Choose the combination by maximizing the degree of feasibility of the 
current population



Diagram of the Manipulation Algorithm



The Algorithm

• On top of the Stochastic Ranking Evolution Strategy (SRES) (Runarsson and Yao, 2000) 

• Using synthetic constrains; from generation 911 on, only original constraints are used

• The neural network is updated in generations 0, 10, 50, 140, 300, 550, 910; Number 
of samples: Nj , 4Nj , 9Nj , 16Nj , 25Nj , 36Nj , 49Nj; Nj  (>=2) is the dimension

• 30 independent runs

T.P. Runarsson and X. Yao, “Stochastic ranking for constrained evolutionary optimization”, IEEE Trans. on Evolutionary Computation,  4(3):284-294, 2000.

Stochastic Ranking



Comparative Studies



Test Problems

T.P. Runarsson and X. Yao, “Stochastic ranking for constrained evolutionary optimization”, IEEE Transactions on Evolutionary 

Computation,  4(3):284-294, 2000.



Results on the Test Problems - Mean



Results on the Test Problems - Best



Results on the Test Problems - Worst



Intermediate Conclusion

• ATMES is the best

• SRES- SC (synthetic constraints) performs consistently better than 
SRES

• Note, however, ATMES has a very ad hoc mechanism for adjusting the 
threshold in converting equality constraints to inequality constraints  



Design Optimization: Pressure Vessel



Design Optimization – Speed Reducer



Summary and Outlook

• Manipulating constraints to ease highly constrained optimization 
problems

• Incremental approximation of constraint functions

• Preliminary results suggest the idea is feasible

• More rigorous study is needed to verify the assumption that isolated 
feasible region is a result of complex constraints

• More specific test problems having isolated feasible regions should be 
constructed

• More sophisticated methods for manipulating the constraints are to 
be developed  
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