Genetic Algorithms with Immigrants and Memory Schemes for Dynamic Shortest Path Routing Problems in Mobile Ad Hoc Networks

Hui Cheng
Dept. of Computer Science
University of Leicester
United Kingdom
09/06/2009

Outline

- Introduction
- Related Work
- The Dynamic Shortest Path Routing Problem
- Specialized GA for the Problem
- Investigated GAs for the Problem
 - Traditional GA Schemes
 - Dynamic GA Schemes
- Experimental Study
- Conclusions

Introduction

- With the advancement in wireless communications, more and more mobile wireless networks emerge, e.g., mobile ad hoc networks (MANETs), wireless mesh networks (WMNs), etc.
- An important characteristic in mobile wireless networks is the *topology dynamics*, that is, the network topology changes over time due to energy conservation or node mobility.

Mobile Ad Hoc Network

- A MANET is a wireless network set up temporarily without a wired infrastructure (routers, switches, servers, cables, access points, etc.).
- It is very suitable for disaster rescue and recovery, battlefield communication, etc.
- Node mobility -> Topology change

- Therefore, in MANETs, the shortest path (SP) routing problem turns out to be a dynamic optimization problem (DOP).
- We propose to use GAs with immigrants and memory schemes to solve the dynamic shortest path routing problem in MANETs.

Related Work

- Quite a few research work have been done to solve the SP problems using artificial intelligence techniques:
 - artificial neural networks (Electron. Lett., 2001)
 - GAs (IEEE TEC 2002)
 - particle swarm optimization (Appl. Soft Comput., 2008)
- However, all these algorithms still address the static SP problem only.

Problem Model

- We consider a mobile ad hoc network operating within a fixed geographical region. We model it by a undirected and connected topology graph $G_0(V_0, E_0)$, where V_0 represents the set of wireless nodes (i.e., routers) and E_0 represents the set of communication links connecting two neighboring routers falling into the radio transmission range.
- Message transmission on a wireless communication link will incur remarkable delay and cost.

- $G_0(V_0, E_0)$, the initial MANET topology graph.
- $G_i(V_i, E_i)$, the MANET topology graph after the *i*th change.
- s, the source node.
- r, the destination node.
- $P_i(s, r)$, a path from s to r on the graph G_i .
- d_l , the transmission delay on the communication link l.
- c_l , the cost on the communication link l.
- $\Delta(P_i)$, the total transmission delay on the path P_i .
- $C(P_i)$, the total cost of the path P_i .

Problem Formulation

- More formally, consider a mobile ad hoc network G(V, E) and a unicast communication request from the source node s to the destination node r with the delay upper bound Δ .
- The dynamic delay-constrained shortest path problem is to find a series of paths $\{P_i|i\in\{0,1,...\}\}$ over a series of graphs $\{G_i|i\in\{0,1,...\}\}$, which satisfy the delay constraint as shown in (1) and have the least path cost as shown in (2).

$$\Delta(P_i) = \sum_{l \in P_i(s,r)} d_l \le \Delta . \tag{1}$$

$$C(P_i) = \min_{P \in G_i} \left\{ \sum_{l \in P(s,r)} c_l \right\} . \tag{2}$$

- Genetic Representation
 - A routing path is encoded by a string of positive integers that represent the IDs of nodes through which the path passes.
- Population Initialization: random initialization
- Fitness Function
 - the less the path cost, the better

$$F(Ch_i) = \left[\sum_{l \in P(s,r)} c_l\right]^{-1}.$$
 (3)

• Selection: Pair-wise Tournament

Crossover

- With the crossover probability, each time we select two chromosomes Ch_i and Ch_i for crossover.
- Ch_i and Ch_j should possess at least one common node. Among all the common nodes, one node, denoted as v, is randomly selected. Then exchange the two subpaths from v to r.

Mutation

- With the mutation probability, each time we select one chromosome Ch_i on which one gene is randomly selected as the mutation point (i.e., mutation node), denoted as v. The mutation will replace the subpath from v to r by a new random subpath.

- Traditional Schemes
 - Standard GA: handling infeasible solutions caused by environmental changes by penalty.
 - Restart GA: once a change is detected, the population will be re-initialized based on the new environment.

Immigrants Schemes

- RIGA: every generation a small number of new randomly generated individuals (i.e., random immigrants) are introduced to the population to replace the worst ones.
- EIGA: every generation a small number of new individuals (mutated from the elitism) are introduced to the population.
- HIGA: every generation both of random immigrants and elitism-based immigrants are introduced.

- Memory Schemes
 - MEGA: memory-enhanced GA, to store useful information in the current environment for possible reuse in the new environment
- Memory and Immigrants Hybridized Schemes
 - MRIGA: memory and random immigrants
 - MIGA: memory-based immigrants
- By the design principle, memory related schemes are suitable for cyclic dynamic environments.

- We implement the following eight algorithms
- Traditional GAs
 - Restart GA
 - SGA (Standard GA)
- Dynamic GAs
 - RIGA
 - EIGA
 - HIGA
 - MEGA
 - MIGA
 - MRIGA

- Initial network topology
 - 100 network nodes are randomly distributed in 200*200 area. If the distance between two nodes falls into the radio transmission range, a link will be added to connect them.
- All the algorithms start from the initial topology. Then after a certain number (saying, R) of generations (i.e., the change interval), a certain number (saying, M) of nodes are scheduled to sleep or wake up depending on their current status.

- Every R generations, randomly select M node to sleep or wake up
 - Therefore, every *R* generations, an updated network topology is read into the algorithms.
- R = 5, 10, 15; M = 2, 3, 4
- We generate 4 topology series
 - M = 2, 3, 4: topology series #2, #3, #4; acyclic environment, 21 topologies
 - M = 1: topology series #1; cyclic environment, 101 topologies (repeat 5 times)

- The ratio of random immigrants: 0.2
- The ratio of elitism-based immigrants: 0.2
- The ratios of hybrid immigrants: 0.1 for RI and 0.1 for EI
- Repeat 10 times.

Basic Experimental Results

Population Size: 50 is ideal

The Change Interval: 5, 10, 15

- To investigate the impact of the change interval on the algorithm performance.
- However, one problem is that the total generations are different for different intervals, i.e., 105, 210 and 315 versus the interval 5, 10, and 15.
- Since the number of change points is the same, we take the data at each change point and its left two and right two generations.

- To investigate the impact of the change severity on the algorithm performance, i.e., the respond speed.
- The change severity is reflected by the number of nodes involved per change.
- We choose topology series #2 and #4 as the two environments with different change severity.
- We pick up RIGA, EIGA, and HIGA together as the examples.

(a) Over topology series #2

(b) Over topology series #4

- In (a), there are two drastic change points. In (b), there are three.
- We count the number of the generations that the population spends to find the best solution before next change occurs.
 - In (a), the average value: 10.67
 - In (b), the average value: 12.67
 - In average, two more generations are spent since the change severity is higher in (b) than in (a).

Compare Dynamic GAs with Traditional GAs

• We compare RIGA, EIGA, and HIGA with SGA and Restart GA.

Compare Immigrants GAs with Memory related GAs in Acyclic Environments

Experimental Results in Cyclic Dynamic Environments

The ideal memory size: 20 is good enough

Compare Memory related GAs with Traditional GAs in Cyclic Environments

Compare Memory related GAs with Immigrants GA in Cyclic Environments

Conclusions

- Create acyclic and cyclic dynamic wireless network environments.
- Test the two traditional GAs and six dynamic GAs (immigrants, memory, immigrants&memory) over the dynamic shortest path routing problem.
- The six dynamic GAs show decent performance, i.e., quickly adapting to the environmental changes (the network topology changes) and producing new good solutions.
- Immigrants GAs work better than memory related GAs in acyclic environment, vice versa in cyclic environment.

Thank you!

Q&A

